
Noname manuscript No.
(will be inserted by the editor)

Deciphering role of inter and intracity human dispersal on epidemic
spread via coupled reaction-diffusion models
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Abstract Public health has been significantly influenced by human mobility patterns since time im-
memorial. A susceptible-infected-deceased epidemic reaction diffusion network model using asymptotic
transmission rate is proposed to portray the spatial spread of the epidemic among two cities due to
population dispersion. Qualitative behaviour including global attractor and persistence property are
obtained. We also study asymptotic behaviour of the whole network with the help of asymptotic be-
haviour at individual cities. The epidemic model shows up two equilibria, (i) the disease-free, and (ii)
unique endemic equilibria. An expression that can be used to calculate the basic reproduction number
for heterogeneous environment, for the entire network is obtained. We use graph theory to analyze
the global stability of our diffusive two-city model. We also performed bifurcation analysis and found
that endemic equilibrium changes stability via Hopf bifurcations. A significant reduction in infection
cases were observed when proper migration rate is maintained between the cities. Numerical results
are provided to illuminate and clarify theoretical findings. Simulation experiments for two-dimensional
spatial model shows that infectious population will increase if contact heterogeneity is increased, but
it will decline if infective population performs more local random movement. We observe that infection
risk may be understated if the parameters used to estimate the basic reproduction number are kept
constant.

Keywords Reaction-diffusion · Heterogeneity · Global stability · Reproduction number · Pattern
formation

1 Introduction

In the long history of mankind, infectious disease has a deep effect on human populations, including
their development and evolution. Individual’s health status is affected by many factors, such as the
quantity of time spent in a specific place, availability and access to affordable health care, complex
economic and social factors, educational attainments, and lifestyles. Despite significant advances in
medical sciences, infectious disease affects both the human and animal population in many parts of
the world. Since performing experiments on the population is prohibited one can use mathematical
model to investigate the transmission, predict the outbreak and even control of epidemics [2]. At
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present, mathematical models are considered as one of the active topic in public health and biology to
determine whether the epidemics can be broken out or not [38]. Many real-world systems often interact
and influence each other. The relationship between migration and the introduction of disease has been
recognized in epidemiology for a long duration. There are many Ordinary differential equation models
constructed to study the effect of the spatial heterogeneity and migration on disease transmission,
which uses meta-population models ([16], [19], [14]). Hethcote (1976) [15] proposed two-patch epidemic
model with population dispersal. Wang and Zhao (2004) [56] and references therein also described
the dynamics of disease propagation between different patches due to population dispersal. These
studies consider meta-population models, in which the population are subdivided into distinct patches,
each of which are considered as homogeneous. This model formulation process is frequently used for
understanding the transmission of disease between and within different population centers. One can use
these models to examine the spatial dynamics of city-by-city transmission and to investigate the reason
for high levels of synchronicity observed between town, cities, and so forth during disease outbreaks.

Another emerging field that is widely studied to investigate epidemic spreading, including rumours,
human disease and computer viruses is complex network models. Complex network is a new branch in
statistical physics which provides a reliable model for the intensive study of the epidemic spreading. In
complex network modelling nodes represent individuals or organization and link the interactions among
them. Mathematical analysis of such models have revealed the importance of topology for investigating
propagation dynamics. Liu et al. (2010) [34], Wen-Jie and Xing-Yuan (2013) [62] studied the epidemic
spreading and discussed the credibility of homogeneous mixing hypothesis. Ren and Wang (2014) [47]
proposed a network model with time-varying community structure. They found that the time of the
epidemic outbreak depends mainly on the mobility rate of the individual. Wen-Jie and Yuan [60]
proposed a novel model with two strategies for controlling epidemic disease: quarantine and message
delivery. Nian et al. (2018) [41] constructed a dynamic network model based on Barabasi-Albert (BA),
keeping the same total number of edges. They showed immunization based on node activity is effective
and is more feasible in dynamic networks. Wang and Zhao (2017) [59] generalized the susceptible-
Infected-Susceptible (SIS) model that explores the propagation of multi-messages by considering their
correlation degree. These models provided very powerful results but did not display the complete local
and global spatial spread dynamics.

These researches are enlightened to our work, yet most of them are focused on static network mod-
els. However, in reality our life is not static. We move from one city to another to perform our job etc.
and then we come back to our own city and perform local random movement. The major drawback
of these models is that they do not include spatial heterogeneity and local random movement which
can also affect the spread of epidemics. The heterogeneity of the spatial environment is considered as
an important contributing factor in propagating many contagious diseases. This is barely surprising
as populations in actuality are not homogeneous: interactions between individuals are likely to have
limited scope. As spatial spread of disease relies on complex interaction between distinct elements
(like, diverse nature of a given population and the dynamics innate to a given pathogen/host inter-
action), mathematical models provide a quality conceptual structure with which spatial emergence of
patterns and processes involved can be studied and explained. In modeling geographic effects or spa-
tial dispersal of a disease, a discrimination is usually created between dispersal and diffusion models.
Using partial differential equations, one can typically introduce spatial variation in epidemic models.
A reaction–diffusion (RD) model describes the proliferation (reaction) and movement (diffusion) of
individuals. By diffusion model, dissemination of infection to immediate adjoining neighbours can be
studied. This mechanical–biological interaction within and surrounding cells has been previously incor-
porated into modelling cancer of brain, breast, kidney and pancreatic. Here, we apply it to model spread
of disease among two connected cities using a mechanically coupled RD model. The spatial spread of
diseases like influenza [64], Ebola involves many unusual and distinct components. Therefore, modeling
their spread is a complicated task.

The propagation of global pandemic diseases are affected by transportation, and is considered as
one of the relevant and crucial problems on the epidemiological multi-group models. Over the last forty
years, both the scope and process of migration have experienced significant shifts, and the majority
of these changes have transformed the innate characteristics of migration-accompanied infectious dis-
ease. In this paper, an effort has been made to decipher the effect of migration on epidemic spread
among heterogeneous cities coupled through reaction-diffusion modeling. The aim is to recommend
some preventive health-policy measures during an outbreak. Asymptotic infection rate which displays
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a saturation effect have been rarely considered for network reaction-diffusion modeling [10]. The asymp-
totic infection rate, βI

S+I+c , is a function of the number of infections present at a given point of time.
This signifies the fact that the number of contacts an individual carrying the virus can have with
other individuals reaches some finite maximum value due to the spatial or social distribution of the
population and/or limitation of time. We believe that this is the first work that considers a two-patch
reaction-diffusion epidemiological model to mimic the scenario of intra and intercity human dispersal.
We also computed basic reproduction numbers for coupled reaction-diffusion systems. We emphasize
that this rate and heterogeneous transmission rate has significant contributions to the dynamics of
disease spread. Our mathematical analysis are inspired by [8], [17], [9], [22], [26], [27], [28], [30], [31],
[44], [51], [61], [63].

The manuscript is organized as follows: In section 2 two-city susceptible-infected-deceased (SID)
model with global and local movement is formulated. In section 3, the existence of equilibrium is
analysed and reproduction number is calculated. Global stability using graph theory is discussed in
section 4. Numerical results are presented to confirm the analytical findings in section 5. In section 6,
we summarize the main contributions of the work.

2 Formulation of Epidemic Model

In the model introduced by Upadhyay et al. (2014) [55], there is no intercity travel. Communicable
diseases such as sexual diseases and influenza can be passed on easily from one city to other cities.
Therefore, considering the effect of both local (within city) and global (across city) population dispersal
on the spread of epidemics are relevant and important. In this work, we considered two city models
which are connected by road. We do not care about the dynamics taking place in connecting roads. A
typical disease is captured by the following Susceptible-Infected-Deceased structure modelling.

dS

dt
= rS

(
1− S + I

K

)
− βSI

S + I + c
,

dI

dt
=

βSI

S + I + c
− aI,

dD

dt
= aI.

We omit the equation D for further calculation since the above system does not depend on D. The
following assumptions are taken into account while formulating the two city epidemiological model:

(i) We considered a population that is structured and interacting in two cities.
(ii) Let (S1, I1) and (S2, I2) denotes the density of susceptible and infective individuals resident in city

1 and city 2 respectively.
(iii) The disease is transmitted to a susceptible individual by an effective contact with an infected

individual.
(iv) We use asymptotic transmission incidence to model disease transmission phenomenon, which, for

human is considered more accurate than mass action ([10], [39], [55]).
(v) The virus is spread among the population only and the disease is not inherited genetically.
(vi) During travelling there is no birth or death.

Considering above assumptions the epidemic situation in two cities with bidirectional movement can
be modeled by the following system of differential equation,

dS1

dt
= r1S1

(
1− S1 + I1

K1

)
− β1S1I1
S1 + I1 + c1

+m1S2 −m2S1 = f1(S1, I1) +m1S2 −m2S1, (1)

dI1
dt

=
β1S1I1

S1 + I1 + c1
− a1I1 +m3I2 −m4I1 = f2(S1, I1) +m3I2 −m4I1, (2)

dS2

dt
= r2S2

(
1− S2 + I2

K2

)
− β2S2I2
S2 + I2 + c2

+m2S1 −m1S2 = f3(S2, I2) +m2S1 −m1S2, (3)

dI2
dt

=
β2S2I2

S2 + I2 + c2
− a2I2 +m4I1 −m3I2 = f4(S2, I2) +m4I1 −m3I2. (4)

All the parameters appearing in (1)-(4) are assumed to be positive constants. A concise description
about (1)-(4) system parameters and variables is presented in Table 1.
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Further, we suppose that functions S1, I1, S2, I2 depend on time as well as on space. The heterogene-
ity in space and the local movement of individuals plays a crucial role in reflecting epidemiological
spread. As an effect of growing international trade, intensive human mobility and inevitable menace of
contagious epidemics, in-depth understanding of statistical and dynamical properties of human travel
are essentially important [6]. We now assume both susceptible and infectious populations also perform
random movement within their city. We consider habitat Ω1 and Ω2 ∈ R2 as a bounded identical
domain with smooth boundary ∂Ω1 and ∂Ω2 representing city 1 and city 2 respectively. Two cities
are considered to be identical. Here we also assume that β1 and β2 depends on the spatial location
p1 = (x1, y1) and p2 = (x2, y2), is positive Hölder continuous function on Ω1 and Ω2 respectively. The

Laplacian operator ∇2 = ∂2

∂x2 + ∂2

∂y2 , is used to describe the local Brownian motion in two-dimensional
space. It can be interpreted as the non-regular and continuous movement of individuals. Incorporating
these facts, equation (1)-(4) can be written in R2 domain as

∂S1

∂t
= DS1

∇2S1 + f1(S1(p1, t), I1(p1, t)) +m1S2(p2, t)−m2S1(p1, t), p1 ∈ Ω1, p2 ∈ Ω2, (5)

∂I1
∂t

= DI1∇
2I1 + f2(S1(p1, t), I1(p1, t)) +m3I2(p2, t)−m4I1(p1, t), p1 ∈ Ω1, p2 ∈ Ω2, (6)

∂S2

∂t
= DS2

∇2S2 + f3(S2(p2, t), I2(p2, t)) +m2S1(p1, t)−m1S2(p2, t), p1 ∈ Ω1, p2 ∈ Ω2, (7)

∂I2
∂t

= DI2∇
2I2 + f4(S2(p2, t), I2(p2, t)) +m4I1(p1, t)−m3I2(p2, t), p1 ∈ Ω1, p2 ∈ Ω2. (8)

Now, consider a translation map f : Ω1 → Ω2 with p2 = f(p1) = p1 + L, L represents a fixed distance
from one city to another. As per our knowledge, this situation has not been modelled yet and is an
initial step for modelling movement of individuals between both inter and intra city. As all models, this
model too is limited by some assumptions like that the cities are identical and people from one city
move another city at exactly the same position obeying some fixed distance law. However, we hope
this research work will open many paths towards modelling movement of population in any desired
location within a different city. Under this map any position p2 in city 2 can be reflected by position
p1 in city 1. Mathematically, we can write

S2(p2, t) = Ŝ2(p1, t), p1 ∈ Ω1, p2 ∈ Ω2,

I2(p2, t) = Î2(p1, t), p1 ∈ Ω1, p2 ∈ Ω2.

Therefore, (5)-(8) is equivalent to

∂tS1 −DS1
∇2S1 = f1(S1(p1, t), I1(p1, t)) +m1Ŝ2(p1, t)−m2S1(p1, t) = g1(S1, I1, Ŝ2), p1 ∈ Ω1, (9)

∂tI1 −DI1∇
2I1 = f2(S1(p1, t), I1(p1, t)) +m3Î2(p1, t)−m4I1(p1, t) = g2(S1, I1, Î2), p1 ∈ Ω1, (10)

∂tS2 −DS2
∇2S2 = f3(Ŝ2(p1, t), Î2(p1, t)) +m2S1(p1, t)−m1Ŝ2(p1, t) = g3(Ŝ2, Î2, S1), p1 ∈ Ω1,(11)

∂tI2 −DI2∇
2I2 = f4(Ŝ2(p1, t), Î2(p1, t)) +m4I1(p1, t)−m3Î2(p1, t) = g4(Ŝ2, Î2, I1) p1 ∈ Ω1. (12)

For the sake of neat and general representation of variables we dropˆnotation i.e. we write Ŝ2 = S2

and Î2 = I2 we rewrite the equation (9)-(12) as follows

∂tS1 −DS1
∇2S1 = f1(S1(x, t), I1(x, t)) +m1S2(x, t)−m2S1(x, t) = g1(S1, I1, S2), x ∈ Ω, (13)

∂tI1 −DI1∇
2I1 = f2(S1(x, t), I1(x, t)) +m3I2(x, t)−m4I1(x, t) = g2(S1, I1, I2), x ∈ Ω, (14)

∂tS2 −DS2
∇2S2 = f3(S2(x, t), I2(x, t)) +m2S1(x, t)−m1S2(x, t) = g3(S2, I2, S1), x ∈ Ω, (15)

∂tI2 −DI2∇
2I2 = f4(S2(x, t), I2(x, t)) +m4I1(x, t)−m3I2(x, t) = g4(S2, I2, I1) x ∈ Ω. (16)

The system can be written compactly as,

∂u

∂t
= D∇2u+ ξ(u), x ∈ Ω, (17)

where u = (S1, I1, S2, I2)T , D = (DS1
, DI1 , DS2

, DI2)T and ξ(u) =


g1(S1, I1, S2)
g2(S1, I1, I2)
g3(S2, I2, S1)
g4(S2, I2, I1)

.

The system (17) is analyzed under the initial conditions given by

S10(x, 0) ≥ 0, I10(x, 0) ≥ 0, S20(x, 0) ≥ 0, I20(x, 0) ≥ 0, (18)
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Fig. 1 Transfer diagram of the two-city model for disease transmission.

where x ∈ Ω ∈ R2 and zero flux boundary conditions

∂S1

∂ν
=
∂I1
∂ν

=
∂S2

∂ν
=
∂I2
∂ν

= 0. (19)

ν represents the outward unit normal vector on the boundary ∂Ω which is assumed to be smooth.
Neumann or zero-flux boundary conditions biologically implies that the domain boundary is iso-
lated or insulated from the external environment i.e. there are no fluxes of populations through the
boundary [40]. By the standard parabolic theory, (17) admits a unique nonnegative classical solution
(S1(x, t), I1(x, t), S2(x, t), I2(x, t)) ∈ C2,1(Ω̄ × (0,∞)), and satisfies (17) point wisely. Moreover, from
the strong maximum principle and the Hopf boundary lemma for parabolic equations [46] guarantee
that S1(x, t), I1(x, t), S2(x, t), I2(x, t) > 0 for all (x, t) ∈ Ω̄ × (0,∞).
We now define two travel matrix

A = (aij)2×2 =

(
0 m2

m1 0

)
, and B = (bij)2×2 =

(
0 m4

m3 0

)
. (20)

Here, aij and bij describe the mobility rate of susceptible and infected from a city i to city j respectively.
We assume these matrices are irreducible. Biologically, it means individuals in city 1 can travel to city
2 directly or indirectly.

3 Dynamical behaviour of the two-city model

Before studying the stability behavior of our spatial model we give the following result to show the
boundedness of system (17) which is important from ecological point of view.

3.1 Some preliminary properties of the spatial model

Proposition 1 All non-negative solutions of model system (1)-(4) which initiate in R4
+ are uniformly

bounded, with ultimate bound ( r14η + 1)K1 + ( r24η + 1)K2, where η = min(a1, a2).

Proof We define,

W (t) = S1(t) + I1(t) + S2(t) + I2(t). (21)

The time derivative of (21) along the solutions of (1)-(4) is

dW

dt
=
dS1

dt
+
dI1
dt

+
dS2

dt
+
dI2
dt
, (22)
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Table 1 Parameter values of system (17) and their biological meanings. We mostly took hypothetical parameter
value which are in ecological permissible range.

Variable/ Parameter Description
Parameter values
S1(t) S1(0) = 1100 Susceptible density in city 1 at time t.
I1(t) I1(0) = 89 Infected density in city 1 at time t.
S2(t) S2(0) = 1233 Susceptible density in city 2 at time t.
I2(t) I2(0) = 10 Infected density in city 2 at time t.
r1, r2 1.02951, 2.23 Growth rate of susceptible in city 1 and 2 respectively.
K1,K2 5000, 2000 Carrying capacity of city 1 and 2 respectively.
β1 2.15 Transmission rate of city 1.
c1, c2 10,20 Constants which display a saturation effect due to the social

or spacial distribution of the population and limitation of time.
β2 0.98 Transmission rate of city 2.
a1, a2 0.15,2.13 Recovery rate of the infective in city 1 and 2 respectively.
m1 1.2 Migration rate of susceptible from city 2 to city 1.
m2 3.2 Migration rate of susceptible from city 1 to city 2.
m3 0.2 Migration rate of infectives from city 2 to city 1.
m4 3.1 Migration rate of infectives from city 1 to city 2.
DS1

, DI1 5, 0.01 Diffusion coefficient of susceptible and infectives of city 1 respectively.
DS2

, DI2 10, 0.05 Diffusion coefficient of susceptible and infectives of city 2 respectively.

for each η > 0, the following inequality hold:

dW

dt
+ ηW = r1S1(1− S1 + I1

K1
) + r2S2(1− S2 + I2

K2
)− (a1 − η)I1 − (a2 − η)I2 + η(S1 + S2),

Taking η = min(a1, a2), the above inequality satisfies

dW

dt
+ ηW ≤ r1S1(1− S1

K1
) + r2S2(1− S2

K2
) + ηS1 + ηS2.

dW

dt
+ ηW ≤ (

r1
4

+ η)K1 + (
r2
4

+ η)K2 = L. (23)

Using comparison lemma for t > T̃ > 0 we have

W (t) ≤ L

η
−
(
L

η
−W (T̃ )

)
e−η(t−T̃ ). (24)

Then for T̃ = 0 we have

W (t) ≤ L

η
−
(
L

η
−W (0)

)
e−η(t). (25)

For large value of t, we have W (t) ≤ L
η with η = min(a1, a2).

For a biologically practical system all population are required to be constrained by a bound in time
by their environments. Thus, the feasible region of (1)-(4) can be chosen as E = {(S1, I1, S2, I2) ∈
R4

+|W (t) = S1(t) + I1(t) + S2(t) + I2(t) ≤ L
η }. It can be easily seen that E is positively invariant with

respect to (1)-(4). Let us denote E0 for the interior of E, and ∂E the boundary of E.

Proposition 2 All non-negative solution (S1, I1, S2, I2) of model (17) with initial condition (18), satisfies

the following inequality

lim sup
t→∞

max
x∈Ω̄

(S1(., t) + S2(., t)) ≤ max{K,max
Ω̄

(S10(x) + S20(x))},

lim sup
t→∞

max
x∈Ω̄

(I1(., t) + I2(., t)) ≤ max

(
βK − a(c+K)

a
,max
Ω̄

(I10(x) + I20(x))

)
.

where the meaning of a, β,K can be found in proof.
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Proof By virtue of (13) and (15) we have the following inequality,

∂S1

∂t
≤ DS1

∆S1 + r1S1

(
1− S1

K1

)
+m1S2 −m2S1, (26)

∂S2

∂t
≤ DS2

∆S2 + r2S2

(
1− S2

K2

)
+m2S1 −m1S2. (27)

Since the system (26)- (27) is cooperative, therefore by using comparison principle of parabolic equa-
tions [12], one can show (S1(x, t), S2(x, t)) is a subsolution of the following problem

dS̄1

dt
= r1S̄1

(
1− S̄1

K1

)
+m1S̄2 −m2S̄1, (28)

dS̄2

dt
= r2S̄2

(
1− S̄2

K2

)
+m2S̄1 −m1S̄2. (29)

Let S = S̄1 + S̄2. Adding (28) and (29) and performing straightforward computations, we get

d(S̄1 + S̄2)

dt
= r1S̄1

(
1− S̄1

K1

)
+ r2S̄2

(
1− S̄2

K2

)
,

dS

dt
≤ 2rS

(
1− S

K

)
,

where r = max(r1, r2), and K = max(K1,K2). Again, using comparison principle one can show S(t)
is a subsolution of the following problem

dS̄

dt
= 2rS̄

(
1− S̄

K

)
.

We observe that the positive constant

S̄ = max{K,max
Ω̄

(S10(x) + S20(x))}, (30)

is the supersolution to (28)-(29). Therefore,

S̄1(t) + S̄2(t) ≤ S(t) ≤ S̄(t).

Also, limt→∞ S̄(t) ≤ K. Thus, from well known comparison principle for parabolic equations, we finally
have

S1(x, t) + S2(x, t) ≤ S̄1(t) + S̄2(t) ≤ max{K,max
Ω̄

(S10(x) + S20(x))} := S̄(t), ∀x ∈ Ω, t ≥ 0. (31)

Hence, we have

S1(x, t) + S2(x, t) ≤ K = Ū1 := Supt≥0||S1(., x) + S2(., x)||∞, ∀x ∈ Ω̄,

This implies

lim sup
t→∞

max
x∈Ω̄

(S1(x, t) + S2(x, t)) ≤ max{K,max
Ω̄

(S10(x) + S20(x))}.

Next, making use of (14) and (16) and putting upper bound of S1 and S2 we have the following
inequality,

∂I1
∂t
≤ DI1∆I1 +

β1Ū1(I1 + I2)

Ū1 + (I1 + I2) + c1
− a1I1 +m3I2 −m4I1, (32)

∂I2
∂t
≤ DI2∆I2 +

β2Ū1(I1 + I2)

Ū1 + (I1 + I2) + c2
− a2I2 +m4I1 −m3I2. (33)
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Again, since the system (32)- (33) is cooperative by using comparison principle of parabolic equations
[12], one can show (I1(x, t), I2(x, t)) ≤ (Ī1(t), Ī2(t)), where (Ī1(t), Ī2(t)) is a solution of the following
differential equation

dĪ1
dt

=
β1Ū1(Ī1 + Ī2)

Ū1 + (Ī1 + Ī2) + c1
− a1Ī1 +m3Ī2 −m4Ī1, (34)

dĪ2
dt

=
β2Ū1(Ī1 + Ī2)

Ū1 + (Ī1 + Ī2) + c2
− a2Ī2 +m4Ī1 −m3Ī2. (35)

Adding (34)-(35) along with few computations and letting I = Ī1 + Ī2, we have the following

dI

dt
≤
(

βK

K + I + c
− a
)
I,

where β = max(β1, β2), a = min(a1, a2) and c = min(c1, c2). Following the same analysis as above, one
can show that for t ≥ 0 we have the following inequality

I1(x, t) + I2(x, t) ≤ Ī1(t) + Ī2(t) ≤ max
(
βK − a(c+K)

a
,max
Ω̄

(I10(x) + I20(x))

)
=: Ī(t), ∀x ∈ Ω, t ≥ 0.

(36)
Hence, we have

I1(x, t) + I2(x, t) ≤ max
(
βK − a(c+K)

a
,max
Ω̄

(I10(x) + I20(x))

)
:= Ū2, ∀x ∈ Ω̄, (37)

This implies

lim sup
t→∞

max
x∈Ω̄

(I1(., t) + I2(., t)) ≤ max
(
βK − a(c+K)

a
,max
Ω̄

(I10(x) + I20(x))

)
.

Definition 1 [7]: The spatial model (17) is said to have the persistence property if for any nonnegative
initial data (S10(x), I10(x), S20(x), I20(x)), there exists positive constants εi = εi(S10, I10, S20, I20) for
i = 1, 2, 3, 4, such that corresponding solution, (S1, I1, S2, I2) of model (17) satisfies,

lim inf
t→+∞

min
Ω̄

S1(x, t) ≥ ε1, lim inf
t→+∞

min
Ω̄

I1(x, t) ≥ ε2, lim inf
t→+∞

min
Ω̄

S2(x, t) ≥ ε3, lim inf
t→+∞

min
Ω̄

I2(x, t) ≥ ε4.

Proposition 3 Assume that if

β1 >
((a1 +m4)(c1 +W1))

W1
, r1 >

β1Ū2

(c1 + Ū2)
,

m2 +
β1Ū2

(c1 + Ū2)
< r1,K1 >

r1Ū2(c1 + Ū2)

(r1 −m2)(c1 + Ū2)− β1Ū2)
, (38)

β2 >
((a2 +m3)(c2 +W3))

W3
, r2 >

β2Ū2

(c2 + Ū2)
,

m1 +
β2Ū2

(c2 + Ū2)
< r2,K2 >

r2Ū2(c2 + Ū2)

(r2 −m1)(c2 + Ū2)− β2Ū2)
, (39)

(where definition of W1 and W3 are given in the proof) holds, than system (17) has the persistence property.

Proof From (13), we have

∂S1

∂t
≥ DS1

∆S1 + r1S1

(
1− S1 + I1

K1

)
− β1S1I1
S1 + I1 + c1

−m2S1,

∂S1

∂t
≥ DS1

∆S1 + r1S1

(
1− S1

K1

)
− r1S1Ū2

K1
− β1S1Ū2

Ū2 + c1
−m2S1,

∂S1

∂t
≥ DS1

∆S1 + S1

(
r1

(
1− S1

K1

)
− r1S1Ū2

K1
− β1S1Ū2

Ū2 + c
−m2

)
,

for t > t1. Since (38) holds, then for small enough ε > 0 chosen

K1

r1

(
r1

(
1− Ū2

K1

)
−m2 −

β1Ū2

c1 + Ū2

)
− ε > 0. (40)
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Hence, there exists t2 > t1 such that for any t > t2,

S1(x, t) ≥W1, (41)

where W1 = K1
r1

(
r1
(

1− Ū2
K1

)
−m2 − β1Ū2

c1+Ū2

)
− ε.

Now, we apply lower bound of S1 to equation (14), and we have

∂I1
∂t
≥ DI∆I1 +

(
β1W1

W1 + I1 + c1
− a1 −m4

)
I1. (42)

Then there exists t3 > t2 such that for any t > t3,

I1(x, t) ≥W2, (43)

where

W2 = −c1 +W1(
β1

a1 +m4
− 1)− ε. (44)

Similarly, we can find bounds for S2 and I2.

S2(x, t) ≥ W3 =
K2

r2

(
r2

(
1− Ū2

K2

)
−m1 −

β2Ū2

c2 + Ū2

)
− ε,

I2(x, t) ≥ W4 = −c2 +W3

(
β2

a2 +m3
− 1

)
− ε. (45)

Summarizing, we have the following

lim inf
t→∞

min
Ω̄

S1(r, t) ≥ W1.

lim inf
t→∞

min
Ω̄

I1(r, t) ≥ W2.

lim inf
t→∞

min
Ω̄

S2(r, t) ≥ W3.

lim inf
t→∞

min
Ω̄

I2(r, t) ≥ W4. (46)

Thus, the model system (17) is persistent.

3.2 Possible equilibria and their existence criteria

Our main interest in this section is the existence and uniqueness of the equilibrium. For this purpose
let us first introduce some notations. For a closed linear operator A : D(A) ⊂ L2(Ω) → L2(Ω), where
D(A) is the domain of A, the spectral spread s(A) of A is defined by

s(A) = sup{Re(λ) : λ ∈ σp(A)},

where σp denotes the point spectrum of A.
We will first discuss equilibrium points in City 1 without any migration. There are only two equilibria
for the following elliptic problem,

0 = r1S1

(
1− S1 + I1

K1

)
− β1S1I1
S1 + I1 + c1

+DS1
∇2S1,

0 =
β1S1I1

S1 + I1 + c1
− a1I1 +DI1∇

2I1, (47)

with boundary conditions
∂S1

∂ν
=
∂I1
∂ν

= 0, x ∈ ∂Ω.

The system has,

9



1. A disease free equilibrium (DFE) is a time independent solution of the form E10 = (S0
10, 0), where

S0
10 > 0 for x ∈ Ω. It is obvious that (S0

10, 0) is a disease free equilibrium if and only if S0
10 is a

positive solution of the equation,

DS1
∇2S1 + S1r1(1− S1

K1
) = 0, x ∈ Ω. (48)

Now, we state the following proposition [49]

Proposition 4 Equation (48) has a positive solution S0
10 if and only if s(DS1

∇2 + r1) > 0. Moreover,

the positive solution S0
10 is unique and it is strictly positive on Ω.

2. An endemic equilibrium E∗10(S∗10, I
∗
10) exists iff there is a positive solution to the (47).

For more generality we investigate the existence of endemic equilibrium when β(x), a1(x), r1(x) are
positive Hölder continuous functions on Ω. Before the main result, we state a useful lemma [33],

Lemma 1 Let Ω be a bounded Lipschitz domain in Rn. Let Λ be a non-negative constant and suppose that

z ∈W 1,2(Ω) is a non-negative weak solution of the inequalities

0 ≤ −∇2z + Λz in Ω,
∂z

∂ν
≤ 0 on ∂Ω.

Then, for any q ∈ [1, n/(n − 2)], there exists a positive constant C0, depending on q, Λ and Ω, such that

||z||q ≤ C0infz.

Proposition 5 Problem (47) admits at least one positive solution.

Proof The proof uses the approach given by [54]; [29]; [30]; [43]. But for the reader convenience we
summarize the steps of the proof given in Appendix A.

Now, we give two simple observations which give the existence of equilibrium points for the other cities
and hence give us an idea about the existence of equilibrium for the entire network.
Remark 1. Suppose that system (17) is at an equilibrium E0 = (S0

1 , 0, S
0
2 , 0), and given city 1 is at

disease free equilibrium, E10. Then city 2 that can be accessed from city 1 is also at the DFE. In
particular, if outgoing matrices A and B are irreducible, then both cities are at the DFE.
Indeed for showing this, suppose the city 1 is at the DFE, i.e., I1 = 0. Then from eqn (14) we have

∂I1
∂t

= m3I2.

As the city 1 is in disease free equilibrium, ∂I1∂t = 0, now since m3 > 0 it follows that I2 = 0. This
implies that the entire system is at disease free equilibrium, E0.

Remark 2. Suppose that system (17) is at an equilibrium E∗ = (S∗1 , I
∗
1 , S
∗
2 , I
∗
2 ), and that the dis-

ease is endemic in city 1. Then the disease is also endemic in city 2 that can be accessed from city 1. In
particular, if the outgoing matrices A and B are irreducible, then the disease is endemic in both cities.
Indeed for showing this, suppose that the disease is endemic in city 1 , i.e., I1 > 0. We will prove this
result by contradiction. Suppose that I2 = 0. Since the system is at equilibrium, from (16) we have

0 =
∂I2
∂t

= m4I1.

Again since m4 > 0, it follows I1 = 0, which is a contradiction. Therefore I2 > 0 if the disease is
endemic in city 1.

Similar results were obtained for the ODE multi-city epidemic model [3]. These results can be
extended for n cities in the similar way. Moreover these results give an idea that if the cities are con-
nected and have access to each other then either both cities will be disease-free or both will be in
disease endemic situations. We have illustrated this result numerically in section 5.
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3.3 Calculation of Basic Reproduction Number

The basic reproduction number, R0 is interpreted as the expected number of new cases generated by
a single infected host in a completely susceptible population [11]. This number is very useful because
it assists to figure out whether infectious disease will spread through the population or will die out.
Following the steps in [52] we first calculate the basic reproduction number for system (1)-(4). For the
epidemic (1)-(4), we define:

F =

 β1S
0
1

S0
1+c1

0

0
β2S

0
2

S0
2+c2

 , V =

(
m4 + a1 −m3

−m4 m3 + a2

)
. (49)

The basic reproduction number can be calculated by finding the spectral radius of the next generation
matrix FV −1.

RODE0 = max{RODE01 , RODE02 }, (50)

where RODE0j (j = 1, 2) is the basic reproduction number of each city given by

RODE01 =
β1(a2 +m3)S0

1

(a1(a2 +m3) + a2m4)(c1 + S0
1)
, RODE02 =

β2(a1 +m4)S0
2

(a1(a2 +m3) + a2m4)(c2 + S0
2)
.

Now, in order to define the basic reproduction number for model (17), we use the approach given
by [58]; [45]. We assume that the state variables are near the disease-free steady state, E0. Let the dis-
tribution of initial infection is represented by φ(x). Under the affect of mortality, mobility and transfer
of individuals in infected compartments, the distribution of those infective members as time evolves
becomes T (t)φ(x). Thus, the distribution of new infection at time t is F (x)T (t)φ(x). Subsequently, the
distribution of total new infection is ∫ ∞

0
F (x)T (t)φ(x)dt. (51)

Define

L(φ)(x) :=

∫ ∞
0

F (x)T (t)φdt = F (x)

∫ ∞
0

T (t)φdt.

L is a positive continuous operator which maps the initial infection distribution of the total infective
members produced during the infection period. Following [58]; [36] we define spectral radius of L as
the basic reproduction number

RHPDE0 := r(L) (RHPDE0 represents basic reproduction number in heterogeneous environment)
(52)

for model (17).
Now, we define the basic reproduction number RHPDE01 for the system of isolated city 1. We linearize
the system around the DFE E10 = (S0

10, 0) and obtain the following equation

∂I1
∂t

= DI1∇
2I1 +

(
β1S

0
10

S0
10 + c1

− a1

)
I1,

∂I1
∂ν

= 0. (53)

By substituting I1(x, t) = e−λtξ(x), λ ∈ R into the equation and dividing both sides by e−λt, we obtain
the following linear eigenvalue problem

DI1∇
2ξ +

(
β1S

0
10

S0
10 + c1

− a1

)
ξ + λξ = 0, (54)

∂ξ

∂ν
= 0.

By the Krein-Rutman Theorem [21], if (λ, ξ) is a solution of (54) with ξ 6= 0 on Ω then λ is real.
Moreover, there exists a least eigenvalue λ∗, with its corresponding eigenfunction ξ∗ positive on Ω.
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Also, there is no other eigenvalue λ that has an eigenfunction ξ which is positive everywhere. Notice
that (λ∗, ξ∗) satisfies

DI1∇
2ξ∗ +

(
β1(x)S0

10

S0
10 + c1

− a1

)
ξ∗ + λ∗ξ∗ = 0.

Following [1], λ∗ is given by the variational characterization as:

λ∗ = inf{[
∫
Ω
DI1 |∇φ(x)|2 +

(
a1 −

β1(x)S0
10

S0
10 + c1

)
φ2(x)] : φ ∈W 1,2(Ω) and

∫
Ω
φdx = 1},

RHPDE01 = sup{

∫ β1(x)S0
10

S0
10+c1

φ2(x)dx∫
[DI1 |∇φ(x)|2 + a1φ2(x)]dx

: φ ∈W 1,2(Ω)}. (55)

Similarly for city 2,

RHPDE02 = sup{

∫ β2(x)S0
20

S0
20+c2

φ2(x)dx∫
[DI2 |∇φ(x)|2 + a2φ2(x)]dx

: φ ∈W 1,2(Ω)}. (56)

The definition of RHPDE0 for (17) is closely related to the stability of DFE, E0 = (S0
1 , 0, S

0
2 , 0). Lin-

earizing the model around E0, the stability of E0 can be decided by the sign of the principal eigenvalue
of the problem:

µφ1 = DI1∇
2φ1 +

(
β1(x)S1

S1 + c1
− (m4 + a1)

)
φ1 +m3φ2, x ∈ Ω,

µφ2 = DI2∇
2φ2 +m4φ1 +

(
β2(x)S2

S2 + c2
− (m3 + a2)

)
φ2, x ∈ Ω, (57)

∂φ1

∂ν
=
∂φ2

∂ν
= 0, x ∈ ∂Ω.

Since the system is cooperative, (57) has a principal eigenvalue µ0 associated with a positive eigenvector
[24].

Following [37], [58], [53], the basic reproduction number RHPDE0 for (17) is defined as the spectral ra-

dius r(−FO−1), where O : D(O) ⊂ C(Ω̄;R2)→ C(Ω̄;R2) is a linear operator O =

(
DI1∇

2 0
0 DI2∇

2

)
−V .

F and V are as defined in (49).

D(O) = (φ1, φ2) ∈ ∩p≥1W
2,p(Ω;R) :

∂φ1

∂ν
=
∂φ2

∂ν
= 0, on ∂Ω and O(φ1, φ2) ∈ C(Ω̄;R2).

However, when the infection coefficients β1 and β2 are spatially independent, the basic reproduction
number admits the same value as its ODE counterpart [11]. We state the following result from [58]:

Theorem 1 If each DS1
, DI1 , DS2

and DI2 is a positive constant and F (x) = F and V (x) = V are

independent of x ∈ Ω, then basic reproduction number for homogeneous environment RPDE0 = r(FV −1) =
RODE0 .

Proof See [58] for the proof.

Section 5 gives numerical evidence for these analytical results.

4 Global Stability Analysis

In this section, we deduce sufficient conditions under which the disease free and endemic equilibrium
globally asymptotically stable in a homogeneous environment. Graph theoretical approaches developed
by [32] are utilized in our proof. Before starting, we recall some preliminaries from graph theory.
Consider a weighted directed graph or digraph G = (W,E) containing a set W = {1, 2, 3...n} of vertices
and a set E of arcs (i, j) leading from source vertex i to destination vertex j and each arc (j, i) is
assigned a positive weight mij . The weight matrix of weighted digraph is given by M = (mij)n×n
whose entry mij equals the weight of arc (j, i) if it exists, and 0 otherwise. A weighted digraph (G,M)
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is strongly connected if and only if the weight matrix M is irreducible. The Laplacian matrix of (G,M)

is defined as L =


∑
k 6=1m1k −m12 ... −m1n

−m21
∑
k 6=2m2k ... −m2n

: : : :
−mn1 −mn2 ...

∑
k 6=nmnk

,

Let Ci denote the cofactor of the ith diagonal element of L. The result which will be used in our
proofs are given as follows [20]:

Proposition 6 Assume n ≥ 2. Then

Ci =
∑
T∈Ti

W (T ), i = 1, 2, 3...., n. (58)

where Ti is the set of all spanning trees T of (G,M) that are rooted at vertex i, and W (T ) is the weight of

T . In particular, if (G,M) is strongly connected, then Ci > 0 for 1 ≤ i ≤ n.

Theorem 2 Assume n ≥ 2. Let Ci be given in the above proposition. Then the following identity holds:

n∑
i,j=1

CimijGi(xi) =
n∑

i,j=1

CimijGj(xj), (59)

where Gi(xi), 1 ≤ i ≤ n, are arbitrary functions.

Proposition 7 Assume RODE0 ≤ 1. Suppose that infective travel matrix B = (bij) is irreducible. Then the

disease-free equilibrium E0 is globally asymptotically stable.

Proof Suppose B = (bij) is irreducible (see (20)). Let F and V be given as in (49). We observe that V
is a non-singular M-matrix since all the off-diagonal entries of V are non-positive and the sum of the
entries of each of its columns are positive. Since B is irreducible, then V −1 > 0 is also irreducible. By
Perron-Frobenious Theorem [4], non-negative irreducible matrix V −1F has a positive left eigenvector
(w1, w2) corresponding to eigenvalue ρ(V −1F ).

(w1, w2)F−1V = RODE0 (w1, w2) (60)

and thus
1

RODE0

(w1, w2) = (w1, w2)F−1V (61)

Let di = wi
βiS

0
i

S0
i

+ci

> 0, i = 1, 2 and I = (I1, I2)T . Set

L1 = d1I1 + d2I2. (62)

Differentiating L1 along solutions of system (1)-(4), we obtain

L′1 = d1

(
β1S1I1

S1 + I1 + c1
− a1I1 −m4I1 +m3I2

)
+ d2

(
β2S2I2

S2 + I2 + c2
− a2I2 +m4I1 −m3I2

)
,

≤ d1

(
β1S

0
1I1

S0
1 + c1

− (a1 +m4)I1 +m3I2

)
+ d2

(
β2S

0
2I2

S0
2 + c2

− (a2 +m3)I2 +m4I1

)
,

=

(
w1

β1S0
1/(S

0
1 + c1)

,
w2

β2S0
2/(S

0
2 + c2)

)
(F − V )I,

= (w1, w2)(1− F−1V )I,

= (w1, w2)(1− 1

RODE0

)I ≤ 0,

Therefore, L1 is a Lyapunov function for system (1)-(4). Since di > 0 for i = 1, 2, L′1 = 0 implies that
either Si = S0

i or Ii = 0 for any 1 ≤ i ≤ 2. When Si = S0
i , we have

0 = (S0
i )
′

= riS
0
i

(
1− S0

i + Ii
Ki

)
− βiS

0
i Ii

S0
i + Ii + ci

∓m1S
0
1 ±m2S

0
2 .
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Comparing these equations with

0 = riSi

(
1− Si

Ki

)
∓m1S1 ±m2S2.

we have Ii = 0. Thus, we showed that L′1 = 0 implies I1 = I2 = 0. It can be easily verified that the
only invariant subset of the set {(S1, I1, S2, I2) ∈ |I1, I2 = 0} is the singleton E0. Therefore, by LaSalle
Invariance Principle[25], E0 is globally asymptotically stable in E0.

Now, we establish the global stability of DFE, E0 for a homogeneous spatial model system (13)-(16).
For this, we select a Lyapunov function as:

V1(t) =

∫ ∫
Ω
L1(I1, I2)dA, (63)

where L1(I1, I2) is given as in (62).

dV1

dt
=

∫ ∫
Ω

[
∂L1

∂I1

∂I1
∂t

+
∂L1

∂I2

∂I2
∂t

]
dA,

=

∫ ∫
Ω

dL1

dt
dA+

∫ ∫
Ω

(
DI1

∂L1

∂I1
∇2I1 +DI2

∂L1

∂I2
∇2I2

)
dA,

= T1 + T2,

where T1 =
∫ ∫

Ω
dL1

dt dA and T2 =
∫ ∫

Ω

(
DI1

∂L1

∂I1
∇2I1 +DI2

∂L1

∂I2
∇2I2

)
dA. We now consider T2 and

determine the sign of each term. We utilize the formula known as Green’s first identity in the plane∫ ∫
Ω
F∇2GdA =

∫
Ω
F
∂G

∂ν
dS −

∫ ∫
Ω

(∇F.∇G)dA,∫ ∫
∂L1

∂I1
∇2I1dA =

∫
Ω

∂L1

∂I1

∂I1
∂ν

dS −
∫ ∫

Ω

[
∇(

∂L1

∂I1
).∇I1

]
dA,

= −
∫ ∫

Ω

[
∇
(
∂L1

∂I1

)
∇I1

]
dA. (64)

Now,

∇
(
∂L1

∂I1

)
=
∂2L1

∂I2
1

∂I1
∂x

î+
∂2L1

∂I2
1

∂I1
∂y

ĵ.

Hence, ∫ ∫
Ω

∂L1

∂I1
∇2I1dA = −

∫ ∫
∂2L1

∂I2
1

[(
∂I1
∂x

)2

+

(
∂I1
∂y

)2
]
dA ≤ 0.

Similarly, ∫ ∫
Ω

∂L1

∂I2
∇2I2dA = −

∫ ∫
∂2L1

∂I2
2

[(
∂I2
∂x

)2

+

(
∂I2
∂y

)2
]
dA ≤ 0.

The above analysis shows that if T1 ≤ 0, then V1(t)
dt ≤ 0. This implies that E0 is globally asymptotically

stable in presence of diffusion if E0 is globally asymptotically stable in the absence of diffusion.

Proposition 8 Assume that RODE0 > 1 and suppose that the following assumptions are satisfied for all

1 ≤ i, j ≤ 2

1. A,B are irreducible.

2. There exists λ > 0 such that a∗ijS
∗
j = λbijI

∗
j .

3. Si − (Si+Ii)
Ki

(Si − S∗i ) < 0, Si 6= S∗i .
4. S∗i (Ii − I∗i )− I∗i (Si − S∗i ) < 0, Si 6= S∗i , Ii 6= I∗i .

Then there exists a unique equilibrium E∗ which is globally asymptotically stable.
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Proof We prove the result when all assumptions are satisfied. For city 1 set

L1(S1, I1) = S1 − S∗1 − S∗1 ln
S1

S∗1
+ I1 − I∗1 − I∗1 ln

I1
I∗1
. (65)

From equilibrium equation, we obtain

r1S
∗
1 −m2S

∗
1 = r1S

∗
1

(
S∗1 + I∗1
K1

)
+

β1S
∗
1I
∗
1

S∗1 + I∗1 + c1
−m1S

∗
2 ,

a1I
∗
1 +m4I

∗
1 =

β1S
∗
1I
∗
1

S∗1 + I∗1 + c1
+m3I

∗
2 .

Note that 1 − x + lnx ≤ 0 for x > 0 and equality holds if and only if x = 1. Differentiating L1 along
the solution of system (1)-(4), we obtain

L′1 = r1S1 − r1S1

(
S1 + I1
K1

)
− β1S1I1
S1 + I1 + c1

+m1S2 −m2S1

+ S∗1

(
r1

(
S1 + I1
K1

)
+

β1I1
S1 + I1 + c1

− m1S2

S1

)
− (r1S

∗
1 −m2S

∗
1)

+

(
β1S1I1

S1 + I1 + c1
− a1I1 +m3I2 −m4I1

)
− I∗1

(
β1S1

S1 + I1 + c1
− a1 +

m3I2
I1
−m4

)
,

≤ r1S1 − r1S1

(
S1 + I1
K1

)
+m1S2 + S∗1

(
r1

(
S1 + I1
K1

)
+

β1I1
S1 + I1 + c1

− m1S2

S1

)
− (r1S

∗
1

(
S∗1 + I∗1
K1

)
+

β1S
∗
1I
∗
1

S∗1 + I∗1 + c1
−m1S

∗
2)

+ (m3I2)− I∗1
(

β1S1

S1 + I1 + c1
+
m3I2
I1

)
+

(
β1S
∗
1I
∗
1

S∗1 + I∗1 + c1
+m3I

∗
2

)
,

≤ r1(S1 −
(S1 + I1)

K1
(S1 − S∗1)) +

β1

S1 + I1 + c1
[S∗1(I1 − I∗1 )− I∗1 (S1 − S∗1)]

+ m1S
∗
2

(
1− S∗1S2

S∗2S1
+ ln

S∗1S2

S∗2S1

)
+m1S

∗
2

(
S2

S∗2
+ ln

S∗2
S2
− S1

S∗1
− lnS

∗
1

S1

)
+ m3I

∗
2

(
1− I2I

∗
1

I∗2 I1
+ ln

I2I
∗
1

I∗2 I1

)
+m3I

∗
2

(
I2
I∗2

+ ln
I∗2
I2
− I1
I∗1
− lnI

∗
1

I1

)
,

≤ m1S
∗
2

(
S2

S∗2
+ ln

S∗2
S2
− S1

S∗1
− lnS

∗
1

S1

)
+m3I

∗
2

(
I2
I∗2

+ ln
I∗2
I2
− I1
I∗1
− lnI

∗
1

I1

)
,

≤ m3I
∗
2

[(
λ
S2

S∗2
+ λln

S∗2
S2

+
I2
I∗2

+ ln
I∗2
I2

)
−
(
λ
S1

S∗1
+ λln

S∗1
S1

+
I1
I1∗

+ ln
I∗1
I1

)]
,

= m3I
∗
2 [G2(S2, I2)−G1(S1, I1)],

= b21I
∗
2 [G2(S2, I2)−G1(S1, I1)],

where Gi(Si, Ii) = λ SiS∗i
+ λln

S∗i
Si

+ λ IiI∗i
+ λln

I∗i
Ii
, i = 1, 2.

Similarly, if we consider L2(S2, I2) = S2−S∗2−S∗2 ln S2
S∗2

+I2−I∗2−I∗2 ln I2I∗2 we have L′2 ≤ m4I
∗
1 [G1(S1, I1)−

G2(S2, I2)] = b12I
∗
1 [G1(S1, I1)−G2(S2, I2)]. Consider a weight matrix M = (mij) with entry mij = bijIi

and denote the corresponding weighted digraph as (G,M). Let Ci =
∑
T∈TiW (T ) ≥ 0 be as given in

proposition 6 with (G,M). Then, by Theorem 2, the following identity holds

2∑
i=1

Ci

2∑
j=1

bijI
∗
i [Gi(Si, Ii)−Gj(Sj , Ij)] = 0. (66)

Set

L3(S1, I1, S2, I2) =
2∑
i=1

CiLi(Si, Ii). (67)

Differentiating (67) and using (66),

L′3 =
2∑
i=1

CiL
′

i ≤
2∑
i=1

Ci

2∑
j=1

bijI
∗
i [Gi(Si, Ii)−Gj(Sj , Ij)] = 0, (68)
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for all (S1, I1, S2, I2) ∈ E0. Therefore, L3 is a Lyapunov function for the system (1)-(4). To prove E∗

is globally asymptotically stable, we need to examine the largest compact invariant set. Since B is
irreducible, we know that Ci > 0 for i = 1, 2 and thus L′3 = 0 implies that Si = S∗i , and I1 = I∗1 for
i = 1, 2. Therefore, the only compact invariant subset of the set where L′3 = 0 is the singleton E∗.
Therefore, by LaSalle Invariance Principle, E∗ is globally asymptotically stable in the interior of E0.

Now, we are in position to prove the global stability of E∗ for spatial model system (13)-(16). Next,
we choose a Lyapunov function as

V2(t) =

∫ ∫
Ω
L3(S1, I1, S2, I2)dA, (69)

where L3(S1, I1, S2, I2) is given as in (67). Then,

dV2

dt
=

∫ ∫
Ω

[
∂L3

∂S1

∂S1

∂t
+
∂L3

∂I1

∂I1
∂t

+
∂L3

∂S2

∂S2

∂t
+
∂L3

∂I2

∂I2
∂t

]
dA,

=

∫ ∫
Ω

dL3

dt
dA+

∫ ∫
Ω

(
DS1

∂L3

∂S1
∇2S1 +DI1

∂L3

∂I1
∇2I1 +DS2

∂L3

∂S2
∇2S2 +DI2

∂L3

∂I2
∇2I2

)
dA,

= U1 + U2,

where U1 =
∫ ∫

Ω
dL3

dt dA and U2 =
∫ ∫

Ω

(
DS1

∂L3

∂S1
∇2S1 +DI1

∂L3

∂I1
∇2I1 +DS2

∂L3

∂S2
∇2S2 +DI2

∂L3

∂I2
∇2I2

)
dA.

∫ ∫
Ω
F∇2GdA =

∫
Ω
F
∂G

∂n
dS −

∫ ∫
Ω

(∇F.∇G)dA,∫ ∫
∂L3

∂S1
∇2S1dA =

∫
Ω

∂L3

∂S1

∂S1

∂n
dS −

∫ ∫
Ω

[
∇(

∂L3

∂S1
).∇S1

]
dA,

= −
∫ ∫

Ω

[
∇
(
∂L3

∂S1

)
.∇S1

]
dA. (70)

Now,

∇
(
∂L3

∂S1

)
=
∂2L3

∂S2
1

∂S1

∂x
î+

∂2L3

∂S2
1

∂S1

∂y
ĵ, (71)

Hence, ∫ ∫
Ω

∂L3

∂S1
∇2S1dA = −

∫ ∫
∂2L3

∂S2
1

[(
∂S1

∂x

)2

+

(
∂S1

∂y

)2
]
dA ≤ 0. (72)

Similarly, ∫ ∫
Ω

∂L3

∂I1
∇2I1dA = −

∫ ∫
∂2L3

∂I2
1

[(
∂I1
∂x

)2

+

(
∂I1
∂y

)2
]
dA ≤ 0,

∫ ∫
Ω

∂L3

∂S2
∇2S2dA = −

∫ ∫
∂2L3

∂S2
2

[(
∂S2

∂x

)2

+

(
∂S2

∂y

)2
]
dA ≤ 0,

∫ ∫
Ω

∂L3

∂I2
∇2I2dA = −

∫ ∫
∂2L3

∂I2
2

[(
∂I2
∂x

)2

+

(
∂I2
∂y

)2
]
dA ≤ 0 (73)

The above analysis indicates that if U1 ≤ 0, then dV2(t)
dt ≤ 0. Thus, we have the following conse-

quence: if E∗ is globally asymptotically stable in the absence of diffusion, then E∗ will remain globally
asymptotically stable in the presence of diffusion.
The same procedure will work for homogeneous coupled reaction-diffusion system with n nodes or
cities and any topology or connections.

5 Numerical Simulation For Two Cities

The global dynamical behaviour of two-city model in the interior of R+
4 is investigated numerically. The

values of the parameters are hypothetical but are chosen carefully on the basis of the ranges reported
in Jorgensen (1979) [18] and are ecologically permissible parameter values. The ODEs (1)-(4) were
integrated using Runge-Kutta method and for spatial model we employ explicit standard five-point
approximation programmed in the MATLAB R2017a software environment.
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5.1 Numerical simulation for non-spatial model and effect of mobility

For the parameter values m1 = 1.2,m2 = 0.2, a1 = 0.15,m3 = 0.2,m4 = 0.1, a2 = 0.13 and other param-
eters as given in Table 1 we obtain positive equilibrium point as E∗ = (48.9651, 642.9726, 52.3128, 321.6942),
which is globally asymptotically stable (c.f. Fig. 2(a)). If we change the parameter m4 = 3.1 we observe
that the dynamics changes from stable focus to limit cycle (c.f. Fig. 2(b)). These figures suggest that
change in migration rate can induce bifurcation.

We have used the MATLAB matcont toolbox for plotting equilibrium manifolds of E∗ and are
presented in Fig. 3(a) and 3(b). These diagrams are generated by taking m4 and m1 as a bifurcation
parameter. In Fig. 3(a), variations of the infective I1 and I2 populations are given as functions of
0 < m4 < 5, with the values of the other parameters are as given above. When 0 < m4 < 0.28826133
the equilibrium E∗ is stable (all eigenvalues have negative real parts). When m4 ≈ m4cr1 = 0.28826133
a complex conjugate pair becomes purely imaginary and the equilibrium loses stability through Hopf-
bifurcation and becomes unstable giving rise to limit cycle which is orbitally stable (first Lyapunov
coefficient is negative). For 0.28826133 < m4 < 3.3198113 the equilibrium, E∗ unstable (two eigenvalues
have positive real parts). However, when m4 ≈ m4cr2 = 3.3198113 the system again experiences Hopf-
bifurcation (supercritical). For 3.3198113 < m4 < 5, E∗ is again stable (all eigenvalues have negative
real parts).

Now, we investigate the effect of m1. As m1 increases from 0 to 8 two Hopf bifurcations are observed.
When 0 < m1 < 0.16385636 we have unstable branches (two eigenvalues are positive and two have
negative real parts). At m1 ≈ m1cr1 = 0.16385636 a complex conjugate pair becomes purely imaginary
giving rise to the first Hopf point (supercritical). For 0.16385636 < m1 < 6.583927 we observe a stable
branch (all eigenvalues have negative real parts). Again at m1 ≈ m1cr2 = 6.583927 two eigenvalues
becomes purely imaginary giving rise to second Hopf point (supercritical). As 6.583927 < m1 < 8 we
again observe an unstable branch (two eigenvalues are positive and two have negative real parts). Thus
in the present system and for the given parameter values we observe two Hopf-bifurcations, one is
stabilizing and other is destabilizing the equilibrium E∗.

Next we draw a Hopf bifurcation curve in (m1,m4) plane (c.f. Fig. 4) from first Hopf point
(m4 ≈ m4cr1 = 0.28826133) in order to detect bifurcations with codimension-2 [23]. No codimension-2
bifurcation is observed. We also performed the continuation of the limit cycle from the first Hopf point
when m1,m4 are treated as the free parameters. At m1 = 1.2 and m4 = 0.28826131 Limit point cycle
is observed. Limit Point Cycle (LPC) is a fold bifurcation of the cycle from the family of limit cycles
bifurcating from the Hopf point, where two limit cycles with different periods are present near LPC
point. No other bifurcation point was found in this curve. Identical results were obtained when we
carried out the continuation of limit cycles from other Hopf point and hence are not reported. Our
simulation results can be compared to the results given by [47]. They derived a critical value with
respect to the mobility rate and found that when mobility rate is larger than critical value outbreak
occurs before it dies out.

Now, suppose that initially city 1 and 2 are disjoint (zero mobility), and that the disease is present
in city 1, while city 2 is such that the disease is absent. For the parameter values given in Table 1
we find that (RODE01 )isolated = β1K1

a1(K1+c1) > 1 while (RODE02 )isolated = β2K2

a2(K2+c2) < 1. Now we connect

both the cities. We observe that mobility can stabilize or destabilize the DFE. We observe that when
we set migration m1 = 1.2,m2 = 0.2,m3 = 0.2,m4 = 0.1, the infection spreads in both the cities (c.f.
Fig. 5(a)). The effective reproduction number for the whole network is 8.8880 greater than unity. The
simulation confirms the instability of the disease-free steady state when RODE0 > 1. Moreover, when
we set migration m1 = 1.2,m2 = 3.2,m3 = 0.2,m4 = 3.1, the infection is dies out in both the cities
(c.f. Fig. 5(b)). In this case, the effective reproductive number is 0.719094 which is less than unity for
the whole network. A change in mobility can induce a bifurcation from RODE0 < 1 to RODE0 > 1 or
vice-versa. Therefore, parameters mi can play an important role in disease controlling.

5.2 Numerical simulation for spatial model

We check the above result for our spatial model system (13)-(16) without and with spatial heterogeneity.
To examine the spatio-temporal dynamics of the system, we carry out intensive numerical simulations
for model (13)-(16) in two-dimensional spaces using finite difference scheme for the 2D Laplacian.
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Fig. 2 Numerical simulation of the system (1)-(4), (a) Time series for infectives in both cities showing global stability
of E∗ with m4 = 0.1, (b)Time series for infectives showing periodic dynamics in two cities with m4 = 3.1. Other
parameter values are the same as given in text.

We consider two cities to be identical square domains. All our numerical simulations use zero-flux
or Neumann boundary conditions and nonzero initial conditions. We discretize the system of size
200 × 200 through x → (x0, x1, x2, ..., xN ) and y → (y0, y1, y2, ..., yN ), with N = 800 i.e. the spacing
between the lattice points is ∆h = 0.25. In the present study, we set ∆t = 0.001.

5.2.1 The effect of mobility

We confirm numerically that if the parameters and the diffusion coefficient are constant the repro-
duction number is the same as in the ODE case. Again, we suppose that cities 1 and 2 are iso-
lated, and initially the disease spreads in city 1 while city 2 is such that the disease is absent, i.e.,
RPDE01 ≈ 14.304723 > 1 while RPDE02 ≈ 0.455555 < 1. Now, let us connect the cities. We observe that
when we set migration m1 = 1.2,m2 = 0.2,m3 = 0.2,m4 = 0.1, the infection spreads in both the cities
(c.f. Fig. 6(a)). The effective reproductive number for the coupled PDE system is RPDE0 ≈ 8.9035 > 1.
However, when we set more strong migration rate m1 = 1.2,m2 = 3.2,m3 = 0.2,m4 = 3.1, the infec-
tion dies out in both the cities (c.f. Fig. 6(b)). The effective reproductive number for the coupled PDE
system is RPDE0 ≈ 0.7968 < 1. We observe that the value of RPDE0 is almost the same as in the ODE
case which is in agreement with the result of Theorem 1.

Now, we are interested in studying the effect of heterogeneity. To capture the seasonality of school
contacts, the transmission rate β1 and β2 can be set to be the periodic function. For this, we consider
β1 = 2.15(1 + cos((πxy)/10)) and β2 = 0.98(1 + cos((πxy)/10)), and keep other parameters the same as
above. There is no explicit formula for computing the basic reproduction number RHPDE0 in a spatially
heterogeneous infection. Thus, we numerically compute it by using solvepdeeig MATLAB function. If
the cities are disconnected, we find RHPDE01 ≈ 23.037539 while RHPDE02 ≈ 0.748634 < 1. When the
cities are connected, we observe that the disease spreads in both the cities with small population dis-
persal and it requires a stronger dispersal rate to reach disease-free state. Even for the migration rate
m1 = 1.2,m2 = 3.2,m3 = 0.2,m4 = 3.1, we found RHPDE0 ≈ 1.290126 > 1 which implies that the
infection does not dies out in both the cities (c.f. Fig. 7(a)) which was not the case in ODE and spatial
model without heterogeneity. From these simulations, we have two implications, (i) the risk of infec-
tion could be underestimated if we compute basic reproduction number using constant parameters,
(ii) more stronger migration rate from disease endemic city to disease free city is required to achieve
overall disease free state in spatially heterogeneous domain (c.f. Fig. 7(b)). In contrast, [47] showed
that the epidemic will die in the first community when the mobility rate is too low. Also, if mobility
rate is high enough the epidemic can spread into second community before it die.
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(a)

(b)

Fig. 3 A branch of equilibria displaying existence of Hopf-bifurcations, (a) in the (m4, I1) and (m4, I2)-plane, (b) in
the (m1, I1) and (m1, I2)-plane. Other parameter values are the same as given in text. H: denote a Hopf point.

Conclusion: Figure 5, 6, 7 give an overview of the dynamics of the basic reproduction number with
respect to the mobility of the susceptible and infected individuals from City 1 (disease endemic) to
City 2 (disease free). These figures show that if the dispersal rate from endemic to disease free city
(m2 and m4) increases it can bring effective reproduction numbers down below unity.

5.2.2 Disease dissemination with varying diffusion

In this subsection, we investigate the influence of diffusion coefficients on RHPDE0 and hence on dis-
ease prevalence or absence. Here, we fix the parameter values DS1

= 1, DS2
= 5, DI2 = 0.05, β1 =

2.15(1 + cos(πxy/10)), β2 = 0.98(1 + cos(πxy/10)) and other parameter values given in Table 1 and
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Fig. 4 The Hopf bifurcation curve in (m1,m4) plane. LPC: denote limit point cycle.

(a) (b)

Fig. 5 (a) Time series for infectives showing the disease is sustained in two cities when m1 = 1.2,m2 = 0.2,m3 =
0.2,m4 = 0.1, (b) Time series for infectives showing disease is disappearing in both cities when m1 = 1.2,m2 =
3.2,m3 = 0.2,m4 = 3.1. Other parameter values are the same as those listed in Table 1.

vary parameter DI1 . Our numerical computations signify that RHPDE0 decreases as DI1 increases and
the system undergoes a transition from RHPDE0 > 1 to RHPDE0 < 1 as DI1 varies from 0.01 to 10 (c.f.
Fig. 8). Similarly, RHPDE0 decreases as any other diffusion coefficient increases. Hence, the larger the
local random diffusion, the smaller is the infection risk.

The finding is in accordance with the previous work [62]. They showed that when the agents move
with a high velocity the inhomogeneity of epidemic spreading decreases. Similar results were found in
[57] for a time-delayed reaction-diffusion model of dengue fever. However, recently [48] showed that
monotonicity of RHPDE0 with respect to diffusion rates does not hold in general. Moreover, we also
observe a change in pattern formation as diffusion coefficient changes from DI1 = 0.01 to DI2 = 10.
Infected population of city 1 gathers into large cluster at DI2 = 10.
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Fig. 6 Spatial dynamics for the homogeneous system (13)-(16) varying migration coefficient m2,m4 at t = 100
days, (a) m2 = 0.2,m4 = 0.1 with RPDE0 ≈ 8.9035 > 1, (b) m2 = 3.2,m4 = 3.1 with RPDE0 ≈ 0.79688 < 1. Initial
conditions and other parameter values are the same as those listed in Table 1. Blue color represents minimum density
and yellow color represents maximum density.

5.2.3 The effect of spatial heterogeneity

Next, we take β1 = 2.15(1 + pcos(πxy/10)) and β2 = 0.98(1 + pcos(πxy/10)), where 0 < p ≤ 1 can
be interpreted as an order of magnitude of infection heterogeneity. We now fix DI1 = 0.01 and other
parameters as above. Our numerical computation indicates that if p is increased from 0 to 1 i.e. more
heterogeneity of spatial infection, RHPDE0 increases as a function of p. We calculate the value of RHPDE0

numerically and found that for (i) p = 0.1, RHPDE0 ≈ 0.876137 < 1, (ii) p = 0.4, RHPDE0 ≈ 1.113995 >
1, (iii) p = 0.8, RHPDE0 ≈ 1.431082 > 1. These simulation shows that infection risk become more
intense by heterogeneous spatial disease transmission (c.f. Fig. 9).

Our simulation result are in agreement with [42]. They modified the standard SIRS model on WS
small-world network and BA scale-free network and analysed the model theoretically and performed
computer simulation on different networks. They found that on increasing the number of links the
critical value to contact rate (λc) decreases, i.e. for contact rate ¿critical value to contact rate, infection
spreads and becomes persistent. Our simulation result also shows that an increase in heterogeneity
(that can be compared to increase in nodes) increases the infectives. However, we did not consider
vaccination effect in controlling the epidemic propagation and can be an important factor.

6 Conclusions and discussions

A complete analysis of a two-city reaction-diffusion model is presented to study the spread dynamics of
transmission of epidemics, where the parameters are distinct for both the cities. We showed that when
the coupled reaction-diffusion system is at an equilibrium and city 1 has disease endemic situations,
the city 2 (connected to city 1 directly or indirectly) will be also at an disease endemic level. These
conclusions assume that the entire coupled system is at a steady state equilibrium. The formula for
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Fig. 7 Spatial dynamics for the heterogeneous system (13)-(16) with β1(x, y) = 2.15(1 + cos(πxy/10)), β2(x, y) =
0.98(1 + cos(πxy/10)) and varying migration coefficient m2,m4 at t = 100 days, (a) m2 = 3.2,m4 = 3.1 with
RHPDE0 ≈ 1.290126, (b) m2 = 7.2,m4 = 7.1 with RHPDE0 ≈ 0.88655 < 1. Initial conditions and other parameter
values are the same as those listed in Table 1. Blue color represents minimum density and yellow color represents
maximum density.

calculating basic reproduction number RHPDE0 for two city reaction-diffusion models is derived using
previous findings. This formula permits us to suggest some control measures against disease spread
from one city to another and to investigate the effectiveness of present public health policies. The
disease free equilibrium (DFE) is globally asymptotically stable if the basic reproduction number for
ODE (RODE0 ) is less than unity i.e. RODE0 ≤ 1, and unstable if RODE0 > 1. The health impact and
consequences produced by population migration is directly related to two basic factors, (i) the distance
between source and the destination [50], and (ii) the size of the mobile population migrating between
different disease prevalent cities. We found the existence of codimension-1 bifurcations (two Hopf-points
and Limit Point of Cycles) and discussed how endemic equilibrium, E∗ changes its stability through
Hopf-bifurcations. We have also shown that a population migration results in the spread of the disease
in both cities, even though the disease is not prevalent in one isolated city. We also observed that a
more strong population dispersal rate from disease endemic city to disease free city can bring the entire
system to disease free situation.

Moreover, for spatially homogeneous infections i.e. if all parameters are constant, we demonstrated
numerically that the diffusion coefficients DI1 and DI2 has no effect on the value of the basic reproduc-
tion number. Although, in a spatially heterogeneous environment, the random diffusion coefficients DI1
and DI2 affects the basic reproduction number. We notice that more local random movements among
the population reduces the basic reproduction number. Alternatively, more spatial heterogeneity in-
duces higher RHPDE0 and as a result more infection risk. Numerical simulation shows that infection risk
can be understated if spatially constant parameters are used to calculate basic reproduction number.

Comparative degrees of analysis are required to see the effect of traveling between and within the
cities on RHPDE0 , and consequently on control strategies. There are a large number of possibilities to
extend the present two-city model, in order to quantify the practicality. Complex network provides a
powerful platform to study the role of heterogeneous topology such as a small world, scale free and is
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Fig. 8 Spatial dynamics of the system (13)-(16) varying diffusion coeffcient DI1 at t = 300 days, (a) DI1 = 0.01 ,
(b) DI1 = 1 and (c) DI1 = 10. Other parameter values are the same as those listed in Table 1. These figures indicate

RHPDE0 is decreasing function of DI1 .

ignored traditionally. Analytic solution for the complete model is complicated, however the numerical
solutions can be used to plan control strategies, for instance by adjusting migration parameters. The
development and analysis of such reaction-diffusion network models are still in their beginning. It is
worthy to note that in this work we assume that the displacements are made from a point of the first
city to exactly the symmetrical point of the other. To generalize it, we have to consider an integral
term to allow individuals to go to desired point in the other city. This issue will be addressed in our
forthcoming work and can assist us to understand spatial spread of an epidemic more accurately when
populations migrate from one location of a city to another city randomly.
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Fig. 9 Spatial dynamics of the system (13)-(16) varying magnitude of infection heterogeneity p where β1 = 2.15(1 +
pcos(πxy/10)) and β2 = 0.98(1 + pcos(πxy/10)) at t = 300 days, (a) p = 0.1 with RHPDE0 ≈ 0.876137 < 1, (b)

p = 0.4 with RHPDE0 ≈ 1.1139949 > 1 and (c) p = 0.8 with RHPDE0 ≈ 1.431082. Other parameter values are the

same as those listed in Table 1. These figures indicate RHPDE0 is an increasing function of p.
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A Appendix

Proof of proposition 5. We consider the following auxiliary system

−DS1∇
2S1 = (θr1(x) + (1− θ)r10)S1

(
1−

S1 + I1

K1

)
−

(θβ1(x)− (1− θ)β10)S1I1

S1 + I1 + c1
, (74)

−DI1∇
2I1 =

(θβ1(x)− (1− θ)β10)S1I1

S1 + I1 + c1
− (θa1(x)− (1− θ)a10)I1, (75)

∂S1

∂ν
=
∂I1

∂ν
= 0.

where r10, β10, a10 are positive constant and the parameter θ ∈ [0, 1]. Problem (74)-(75) becomes problem (47) at
θ = 1. We divide the proof into three parts for easy understanding.
Step 1. We find the upper bounds for any positive solution (S1, I1) to (74)-(75). In view of (74), it holds∫

Ω
S1dx ≤ K1 and

∫
Ω
I1dx ≤ K1. (76)

Thus, we can find a positive constant C independent of θ ∈ [0, 1] such that

(θr1(x) + (1− θ)r10)S1

(
1−

S1 + I1

K1

)
≤ max(max r1(x), r10)

∫
Ω
S1dx ≤ C

and

(θβ1(x) + (1− θ)β10)
S1I1

S1 + I1 + c1
≤ max(max β1(x), β10)

∫
Ω
I1dx ≤ C

The positive constant C does not depend on the parameter θ ∈ [0, 1] and can be different depending on its posi-
tion. Applying L1 estimate theory for elliptic equations [5] to equations (74)-(75), we obtain ||S1||W1,1(Ω) ≤ C and
||I1||W1,1(Ω) ≤ C. Application of Sobolev embedding theorem gives us,

W 1,1(Ω) → Lp(Ω), ∀1 ≤ p ≤
n

n− 1
or 1 ≤ p <∞ if n = 1.

we have
||S1||Lp(Ω), ||I1||Lp(Ω) ≤ C, ∀1 ≤ p ≤

n

n− 1
or 1 ≤ p <∞ if n = 1. (77)

Applying Lp estimate for elliptic equations [13] to (74)-(75) leads to

||S1||W2,p(Ω), ||I1||W2,p(Ω) ≤ C, ∀1 ≤ p ≤
n

n− 1
or 1 ≤ p <∞ if n = 1. (78)

Again we apply Sobolev embedding theorem, to get

||S1||Lp∗ (Ω), ||I1||Lp∗ (Ω) ≤ C, ∀1 ≤ p∗ ≤
n

n− 3
or 1 ≤ p∗ <∞ if n = 1. (79)

Repeating the above process finitely many times, one can affirm that

||S1||L∞(Ω) ≤ C, ||I1||L∞(Ω) ≤ C. (80)

Step 2. Now, we find lower bounds for any positive solution (S1, I1) to (74)-(75). Integrating (75) over Ω gives∫
Ω

[θβ(x) + (1− θ)β10]
S1I1

S1 + I1 + c1
dx =

∫
Ω

[θa(x) + (1− θ)a10]I1dx, (81)

Clearly, (81) indicates

c

∫
Ω
I1dx ≤ d

∫
Ω
S1dx, (82)

where c = min(min a(x), a10) > 0, d = max(max β(x), β10) > 0. One can then insert
∫
Ω I1dx ≤ K1 −

∫
Ω S1dx into

(82) to get ∫
S1dx ≥

cK1

c+ d
. (83)

Notice that S1 satisfies

−∇2S1 +
1

DS1

max(max β1(x), β10)S1 > 0, ∀x ∈ Ω. (84)

Thus, together with (83) and Lemma 1 with q = 1 concludes that

S1(x) ≥ C,∀x ∈ Ω. (85)
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We next take minΩI1(x) = I(x0). According to [35], one can see

[θβ1(x0) + (1− θ)β10]S1(x0)

S1(x0) + I1(x0) + c1
≤ θa1(x) + (1− θ)a10. (86)

This leads to

minΩ̄I1(x) = I1(x0) ≥
min(minΩ̄ β1(x), β10)S1(x0)

max(maxΩ̄ a1(x), a10))
− c1 − S1(x0) ≥ C. (87)

If β1(x0)S1(x0)/a1(x0) − c1 − S1(x0) > 0, from the above analysis of step 1 and 2 we can always find a positive
constant C∗ > 1, which is independent of θ ∈ [0, 1], such that any positive solution (S1, I1) of (74)-(75) satisfies

1

C∗ < S1(x), I1(x) < C∗, ∀x ∈ Ω̄ (88)

Step 3. Finally, we find existence of positive solution to (74)-(75). Let us denote a set,

Θ = {(S1, I1) ∈ C(Ω̄)× C(Ω̄) :
1

C∗ < S1(x), I1(x) < C∗, } (89)

Thus, (74)-(75) has no positive solution (S1, I1) ∈ ∂Θ. For θ ∈ [0, 1], we also define the operator

H(θ, (S1, I1)) = (−∇2 + I)−1(ĥ(θ, (S1, I1)), h̃(θ, (S1, I1))), (90)

ĥ = S +D−1
S1

(
(θr1(x) + (1− θr10))S1

(
1−

S1 + I1

K1

)
−

(θβ1(x)− (1− θ)β1(x))S1I1

S1 + I1 + c1

)
,

h̃ = I +D−1
I1

(
(θβ1(x)− (1− θ))S1I1

S1 + I1 + c1
− (θa1(x)− (1− θ)a10)I1

)
, (91)

Clearly, the existence of positive solutions of (47) is identical to the existence of fixed point of the operator
H(1, .) in Θ. From standard elliptic regularity theory one can find that H is a compact operator from [0, 1] × Θ to
C(Ω̄)× C(Ω̄). Furthermore, we have

(S1, I1) 6= H(θ, (S1, I1)), ∀θ ∈ [0, 1] and (S1, I1) ∈ ∂Θ.

Therefore, the topological degree deg(I −H(θ, .), Θ) is well-defined and is independent of θ ∈ [0, 1]. Denote

S∗
10 =

a1(
√
B + (c1r1 +K1(a1 − β1 + r1)))

2β1r1

I∗10 =
−(a1 − β1)2K1 − (β1(c1 −K1) + a1(c1 +K1))r1 +

√
(a1 − β1)2B

2β1r1

where B = (a1− β1)K2
1 + 2K1(β1(c1−K1) + a1(c1 +K1))r1 + (c1 +K1)2r2

1 . [55] have already proved that (S∗
10, I

∗
10)

is linearly stable when β1(x), r1(x), a1(x) are constant. Using well-known Leray-Schauder degree index formula, we
have

deg(I −H(0, .), Θ) = index(I −H(0, .), (S∗
10, I

∗
10)) = 1.

Therefore, from homotopy invariance of the Leray-Schauder degree it follows that

deg(I −H(1, .), Θ) = deg(I −H(0, .), Θ) = 1,

which implies that H(1, .) has at least one fixed point in Θ. As a consequence, (47) has at least one positive solution.
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